Opiniones de Comet
Calificación general
Filtrar
Tamaño de la empresa
Tiempo usado
Reseñas de 12
- Sector: Hardware informático
- Tamaño de la empresa: 201-500 empleados
- Software usado Semanalmente durante 6-12 meses
-
Fuente de la reseña
Calificación general
- Facilidad de uso
- Probabilidad de recomendación 7.0 /10
Comet for DL and NLP Class
Revisado el 6/6/2022
I had several deep learning and NLP classes with Comet. This software is recommended by the class....
I had several deep learning and NLP classes with Comet. This software is recommended by the class. The overall usage is pretty good, with easy setup and grading, and their intuitive interface.
Puntos a favor
Great plotting tool, fast speed, and detailed documentation
Puntos en contra
It is a bit hard to manage when there are too many experiment trails.
- Sector: Ingeniería industrial o mecánica
- Tamaño de la empresa: 51-200 empleados
- Software usado A diario durante Más de dos años
-
Fuente de la reseña
Calificación general
- Relación calidad-precio
- Facilidad de uso
- Asistencia al cliente
- Probabilidad de recomendación 9.0 /10
Best experiment tracking tool
Revisado el 19/6/2022
It is a good software that helped me keep track of my Deep Learning experiments.
It is a good software that helped me keep track of my Deep Learning experiments.
Puntos a favor
Experiment tracking and collaboration is accessible on this platform
Also easy to upload files
Puntos en contra
Limited file size upload. It throws errors for bigger file size
- Sector: Energías renovables y medio ambiente
- Tamaño de la empresa: 11-50 empleados
- Software usado Mensualmente durante Prueba gratis
-
Fuente de la reseña
Calificación general
- Facilidad de uso
- Asistencia al cliente
- Probabilidad de recomendación 7.0 /10
Comet Review
Revisado el 7/6/2022
Puntos a favor
The reports feature which enabled one to embed different panels
Puntos en contra
At first the learning process of how the software works was steep.
- Sector: Software informático
- Tamaño de la empresa: 1,001-5,000 empleados
- Software usado A diario durante Más de un año
-
Fuente de la reseña
Calificación general
- Relación calidad-precio
- Facilidad de uso
- Asistencia al cliente
- Probabilidad de recomendación 8.0 /10
Great Product. Easy to Use. Becoming expensive.
Revisado el 25/7/2022
We have really enjoyed using comet. It's been really easy to setup and makes experiment tracking...
We have really enjoyed using comet. It's been really easy to setup and makes experiment tracking and gaining insight into the model's performance so much better. The support has also been really good, especially when interacting through the Slack Connect channel. Unfortunately, the business has thought about moving away from the product due to the high cost of licenses.
Puntos a favor
Comet is really easy to setup and provides really useful visualizations without a ton of boilerplate code. A simple log_asset() or log_metric() call can go a long way into providing insight into how the model is training or performing with comet automatically generating graphs or confusion matrices or viewing images and predictions online.
Puntos en contra
Occasionally there are inconsistencies with what is offered in the Comet UI and what is available through the python SDK. This was observed when trying to automatically upload and tag models in the model registry.
The price is also becoming a factor on whether or not we move away from comet.
- Sector: Investigación
- Tamaño de la empresa: 501-1,000 empleados
- Software usado Semanalmente durante Más de un año
-
Fuente de la reseña
Calificación general
- Facilidad de uso
- Asistencia al cliente
- Probabilidad de recomendación 10.0 /10
It does its job perfectly well, and you can trick it into doing many other jobs.
Revisado el 31/5/2022
I needed a tool that would help me in keeping track of my experiments. I got a whole set of tools...
I needed a tool that would help me in keeping track of my experiments. I got a whole set of tools that is perfect for my ML research
Puntos a favor
The ease of integration with existing pipelines and workflow is fantastic. I also love the new panels UI, it cuts down all configuration to a minimum
Puntos en contra
The only thing which annoys me is the chaos in custom view settings. Most of the time i create some view, and when I want to reuse it later i have to create a whole new copy of it, which leads to constantly increasing the number of views.
- Sector: Investigación
- Tamaño de la empresa: 51-200 empleados
- Software usado A diario durante 6-12 meses
-
Fuente de la reseña
Calificación general
- Relación calidad-precio
- Facilidad de uso
- Asistencia al cliente
- Probabilidad de recomendación 8.0 /10
Good product to track ML trainings and generated data
Revisado el 14/6/2022
Puntos a favor
Easy to use and integrate, can track data from any device, can also check from mobile phone on the go
Puntos en contra
Data organisation of old trials could be done better
- Sector: Internet
- Tamaño de la empresa: 1,001-5,000 empleados
- Software usado Semanalmente durante Más de un año
-
Fuente de la reseña
Calificación general
- Relación calidad-precio
- Facilidad de uso
- Asistencia al cliente
- Probabilidad de recomendación 7.0 /10
Great Experimentation Tracker
Revisado el 25/7/2022
Puntos a favor
Comet ML provides an integrated platform to track experiments, log assets/metrics and also provide various visualizations. It is a great tool to maintain and reproduce models
Puntos en contra
The documentation could be improved and also the panels needs to be improved for accessibility
- Sector: Tecnología y servicios de la información
- Tamaño de la empresa: 2-10 empleados
- Software usado Semanalmente durante 6-12 meses
-
Fuente de la reseña
Calificación general
- Relación calidad-precio
- Facilidad de uso
- Asistencia al cliente
- Probabilidad de recomendación 10.0 /10
Easy to Integrate with Machine Learning Projects
Revisado el 4/6/2022
Puntos a favor
I have explored bunch of other experimentation platform for ML projects but Comet is my most favourite tool by far as it provides easy integration with major ML frameworks such as Scikit-learn, Pytorch, Tensorflow, Keras, and so on. In addition to that, it supports multiple programming languages.
Puntos en contra
I don't feel any major features Comet is missing as most of the experimentation in ML projects already fulfilled.
- Sector: Investigación
- Tamaño de la empresa: 2-10 empleados
- Software usado A diario durante Prueba gratis
-
Fuente de la reseña
Calificación general
- Facilidad de uso
- Probabilidad de recomendación 10.0 /10
Academic researcher-Overall incredibly useful for experiment organization
Revisado el 7/6/2022
Puntos a favor
Comet is fairly easy to set up and use, and has the ability to store different types of results. The panel system makes it easy to compare across hyperparameters and the community panels are well developed.
Puntos en contra
The UI can be slow as more experiments are added an occasionally there are minor bugs which are manageable.
- Sector: Software informático
- Tamaño de la empresa: 201-500 empleados
- Software usado Semanalmente durante 1-5 meses
-
Fuente de la reseña
Calificación general
- Facilidad de uso
- Probabilidad de recomendación 8.0 /10
Comet review
Revisado el 2/12/2022
Puntos a favor
Comet is a good tool that is great in machine learning and deep learning.
Puntos en contra
sadly, Comet software has no free trial.
- Sector: Investigación
- Tamaño de la empresa: 11-50 empleados
- Software usado Semanalmente durante 6-12 meses
-
Fuente de la reseña
Calificación general
- Relación calidad-precio
- Facilidad de uso
- Asistencia al cliente
- Probabilidad de recomendación 10.0 /10
Excellent tool to keep track of experiments
Revisado el 31/5/2022
Has been seamless.
Has been seamless.
Puntos a favor
It is an easy alternative to replace local experiment tracking that makes it convenient to check on live/previous experiments from any device.
Puntos en contra
Saving model can be a hassle, especially when size becomes large.
- Sector: Software informático
- Tamaño de la empresa: Trabajador autónomo
- Software usado Semanalmente durante 6-12 meses
-
Fuente de la reseña
Calificación general
- Facilidad de uso
- Asistencia al cliente
- Probabilidad de recomendación 10.0 /10
Good product
Revisado el 15/6/2022
Puntos a favor
Ease of use and usability within a team.
Puntos en contra
Team size is limited on academic plan makes it hard to organize